Kaplanova turbína
Kaplanova turbína je přetlaková axiální turbína s velmi dobrou možností regulace. Toho se využívá především v místech, kde není možné zajistit stálý průtok, nebo spád.
Turbínu vynalezl profesor brněnské techniky Viktor Kaplan. Od svého předchůdce, Francisovy turbíny, se liší především menším počtem lopatek, tvarem oběžného kola a především možností regulace náklonu lopatek u oběžného i rozváděcího kola.
Kaplan jako první vzal při teoretickém návrhu turbíny v úvahu vazkost vody. V letech 1910-1912 proto navrhl na základě svých úvah nový tvar oběžného kola. První prototyp Kaplanovy turbíny byl vyroben brněnskou firmou Ignác Storek v roce 1919. Po zkouškách se ukázalo, že turbína dosahuje vynikající mechanické účinnosti až 86 %. Další prototyp byl úspěšně vyzkoušen v poděbradské elektrárně.
Později, když se Kaplanovým žákům podařilo vyřešit i problémy s kavitací, se tato turbína stala nejvýznamnějším typem turbíny užívaným ve velkých vodních elektrárnách po celém světě. Začátkem jejího úspěchu byla úspěšná montáž tehdy největší turbíny světa ve švédském Jlla Edet v roce 1925.
Kaplanovy turbíny byly velice úspěšným vývozním artiklem československého strojírenství.
Kaplanova S-turbína (stejně tak jako Semi-Kaplan a turbína vrtulová) patří mezi nejčastěji používané hnací stroje na nově budovaných malospádových vodních elektrárnách. Bývá použita i při přestavbě starších vodních děl - původně osazených vertikální Francisovou turbínou, kde často dosahuje lepšího využití toku (díky širšímu regulačnímu rozsahu). Osazují se s ní především vodní díla jezová a také vodní díla derivační s otevřeným přivaděčem na menších spádech. Svůj název získala od esovitě tvarované savky a je turbínou horizontální. Používá se výhradně pro pohon generátorů a to především asynchronních, ale díky dobré regulovatelnosti je možné použití i generátoru synchronního a možnost dodávky elektřiny do samostatné sítě nebo soustrojí použít jako záložní energetický zdroj.
Toto technické uspořádání umožňuje využití spádů od 1,5 do cca 5,5 metrů a průtoků od 250 do 6000 litrů za sekundu. Nejčastější použití však nalezne na spádech od 2 do 4 metrů při průtocích od 500 do 3000 litrů za sekundu. Výhodou této přímoproudé turbíny je, že má malé náklady na stavební část. Nepotřebuje žádnou kašnu ani hluboké vývařiště. Vodorovně vyvedený hřídel je pro většinu aplikací ideální. Díky tomuto řešení může být generátor umístěn dostatečně vysoko, což ho často zachrání před zatopením. Aby však mohl hřídel turbíny snadno opustit těleso stroje, musí být savka turbíny esovitě zahnutá a následkem toho má o několik procent nižší účinnost ve srovnání se savkou přímou. Převod ke generátoru je u menších turbín řemenový (vícenásobnými klínovými řemeny) nebo u větších strojů ozubeným čelním soukolím v samostatné uzavřené převodovce. Pouze turbíny na větších spádech, které dosahují dostatečně vysoké otáčky, jsou spojeny s generátorem přímo.
Velkou výhodou tohoto stroje je malá stavební výška, možnost instalace do malých strojoven u jezových elektráren nebo v jezových pilířích. Mechanicky se jedná o kompaktní technologický blok. Regulovatelný rozváděč ve spolupráci s regulací oběžného kola umožnuje nastavit a efektivně využít průtok ve velmi širokém regulačním rozsahu. Lze jím i téměř zastavit průtok strojem, před vstup do turbíny se osazuje pouze havarijní uzávěr. Bývá jím nejčastěji stavidlo, u větších spádů klapka nebo hradící deska.
Nevýhodou stroje - stejně jako všech Kaplanových turbín s dvojitou regulací je značná mechanická složitost a od toho se odvíjející vysoká cena a vyšší náklady na údržbu. Proto má význam tento typ turbíny instalovat pouze na lokality, kde je to jejich hydrologickým charakterem skutečně opodstatněné. Mezi takové patří lokality bez možnosti akumulace vody na kterých je navíc průtok během roku natolik rozkolísaný, že by použití jednodužších typů strojů přinášelo velké ztráty. V ostatních případech je ekonomicky výhodnější použít levnější turbíny s jednoduchou regulací např. Semi-Kaplan, vrtulové S-turbíny a pod. Stroj je (stejně jako většina rychloběžných strojů) citlivý na dodržení přesného spádu, otáček a správně seřízené regulační vazby mezi rozváděčem (RK) a oběžným kolem (OK). Určitou nevýhodu (ve srovnání s kašnovou nebo Tomannovou turbínou) je nutnost údržby dvou hřídelových ucpávek a nepřístupné ložisko pod vodou.
Samotná turbína je umístěna přímo ve spodní části strojovny a přes přírubu spojena s přechodovým kusem, který zajišťuje přívod vody. Voda vtéká do difuzéru stroje, který se kuželovitě zužuje. Tím se rychlost vody zvýší. Následně míjí centrační kříž, který drží hlavici ložiskového tělesa a vsupuje mezi rozváděcí lopatky. Lopatky upraví směr a rychlost vody pro vstup do oběžného kola. 0běžné kolo je umístěno v nejužším průřezu celého stroje, kde je rychlost proudění vody nejvyšší. Plášť stroje je v tomto místě mírně kulovitě vyklenutý, aby dovoloval změnu sklonu lopatek oběžného kola bez toho, že by zachytily o stěnu. Počet lopatek oběžného kola je (s ohledem na jejich ovládání) sudý. Nejčastěji jsou čtyři. Jejich zakřivení je voleno tak, aby se mezilopatkové kanály ve směru proudění zužovaly. Voda, která jimi proudí musí zvyšovat rychlost a měnit směr. Tím vzniká na lopatky reakční síla uvádějící oběžné kolo do pohybu. Voda opouští oběžné kolo poměrně značnou zbytkovou energií. Tu však následně využívá savka turbíny a transformuje ji na zápornou tlakovou energii, která podporuje průtok vody strojem. Turbína musí být vždy současně regulována rozváděcími lopatkami i sklonem lopatek oběžného kola tak, aby bylo proudění vody na výstupu z oběžného kola rovnoběžné s hřídelem, bez parazitní rotace. V opačném případě dochází v savce ke značným ztrátám, poklesu účinnosti stroje a ztrátě většiny výhod, které Kaplanova turbína ve srovnání s jinými vodními motory přináší. Savka může končit ve vývařišti (na obrázku). Její okraj musí být i při zastavené turbíně pod hladinou. U větších strojů savka plynule přechází do vodorovně orientovaného obdélného průřezu, který se rozšiřuje a plynule přechází do odpadního kanálu.
Schema uspořádání:

Popis:
Přechodový kus má takový tvar, aby minimalizoval kontrakci a voda vstupovala do stroje v celém průřezu stejnou rychlostí. Tento díl je při stavbě zabetonovaný a i při případné demontáži či opravách soustrojí zůstává na svém místě. Vstupní kuželovitý díl je u tohoto stroje sestavou s největším počtem součastí. V jeho širší části je napevno přivařen nebo odlit čtyř- i více-ramenný centrační kříž, který drží náboj s ložisky. Ramena centračního kříže mají kapkovitý průřez, aby svým tvarem kladla rychle proudící vodě co nejmenší odpor. V náboji jsou uloženy i vnitřní konce čepů rozváděcích lopatek. Těch by měl být výrazně jiný počet než lopatek oběžného kola, často lichý, například 9 kusů, aby nedocházelo ke "střihu" vody a zbytečným vibracím a hluku. U některých typů turbín má centrační kříž tolik ramen, kolik je rozváděcích lopatek a přímo tvoří jejich náběžnou hranu. Vnější čepy rozváděcích lopatek procházejí obvodem pláště a každý z nich je samostatně utěsněn. Konce čepů jsou opatřeny regulačními páčkami. Páčky jsou ovládány soustavou táhel od regulačního kruhu, který se pootáčí po obvodu tělesa turbíny. Vzhledem k tomu, že osy rozváděcích lopatek i dráha, kterou opisují oka regulačního kruhu nejsou v souladu, je spojení regulačních táhel řešeno prostřednictvím kulových kloubů (stejných jako u řízení automobilu). Jednotlivá táhla jsou seřízena tak, aby na sebe rozváděcí lopatky v uzavřeném stavu těsně doléhaly. Za rozváděcími lopatkami následuje krátký volný prostor, kde se po průchodu rozváděčem proudová vlákna spojí a sjednotí si směr pro vstup do oběžného kola. Obežné kolo se stejně jako u všech ostatních Kaplanových turbín skládá z dutého náboje, který skrývá tzv. křížovou hlavu, která přes soustavu táhel zabezpečuje synchronní natáčení lopatek. Ovládání oběžného kola provádí regulační automatika podle otevření rozváděče. Automatika je nejčastěji hydraulická a dnes téměř všude řízená počítačem, který řídí průtok turbíny v závislosti na okamžitém průtoku vody. Navíc ještě vazbu dokorigovává podle skutečného čistého spádu, na kterém trubína pracuje. Hřídel vychází z vodního prostoru do strojovny kolenem savky. V místě průchodu bývá obyčejná provazcová ucpávka umožňující navíc tepelnou dilataci dlouhého hřídele. Za touto ucpávkou následuje masivní radiální ložisko, které zachycuje síly od převodů ke generátoru. Na konci hřídele je umístěn hydraulický válec, olejový rozváděč pro přívod oleje do hlavy nebo jiné zařízení (např. axiální ložisko) kterým se provádí regulace oběžného kola.
Technické detaily:
- Turbíny od různých výrobců se mohou, co do detailů konstrukčního uspořádání, lišit.
- Při jejich opravách, montážích i demontážích buďte velmi opatrní. Bez podrobné znalosti výkresové dokumentace můžete velmi snadno přehlédnout nějaký zdánlivě bezvýznamný šroubek schovaný pod vrstvou silikonového tmelu nebo strhnout nepřiměřeně tenký šroub. Pokud jste zvyklí na starší konstrukce strojů, které snesly i tvrdší zacházení, budete se muset silně ovládat a mnohdy pracovat s hodinářským přístupem.
- Zasahovat amatérsky do hydraulické geometrie těchto rychloběžných strojů bez podrobných výpočtů se také moc nevyplácí a jen málo kdy je výsledek úměrný vynaloženému úsilí.
- Naopak velmi pozitivních výsledků můžete dosáhnout opatrným dokorigování regulační vazby pro různé průtoky a chod soustrojí včetně generátoru tak v průběhu roku optimalizovat. Při určitém otevření rozváděče pozvolna měňte natočení lopatek oběžného kola tak, až dosáhnete co nejvyšší dodávky do sítě. Vždy nechejte stav ustálit. To udělejte při různých průtocích a nové nastavení, pokud se liší od standardního, v řídící jednotce uložte.
- Projeví-li se u strojů tohoto typu nějaká malá závada, je zapotřebí ji odstranit ihned, nikoli ji odložit na "někdy jindy". Mohli by jste si velmi snadno zadělat na značně drahou opravu.
- Náboj s ložisky je pro pracovníka přístupný pouze po úplném vypuštění vody, pokud proleze přívodním mezikusem. V opačném případě je nutné celý stroj demontovat a vyzdvihnout jeřábem.
- Náboj držený centračním křížem je sestaven z několika vzájemně sešroubovaných prstenců tvořící složitý celek propojený průvrty a kanály. Při demontáži a zpětné montáži je bezpodmínečně nutné dbát na jejich správnou polohu.
- Rameny procházejí podélné kanály, kterými se z prostoru strojovny do ložiskového prostoru obklopeného vodou nalévá nebo vypouští olejová náplň, kontroluje její hladina a další kanál slouží k odvodu průsaku z ucpávky nebo gufera.
- Při použití silikonových těsnících tmelů k utěsnění náboje nezapomeňte olejový prostor vypláchnout a překontrolovat průchodnost všech kanálů.
- V náboji je umístěno jednak ložisko radiální, ložisko axiální, soustava gufer zabranující úniku oleje a speciální čelní rotační těsnění (ucpávka) bránící vniknutí vody.
- Životnost těsnícího elementu je závislá na konstrukčních otáčkách turbíny, kvalitě povrchu vůči kterému těsní a především na obsahu abrazivních částic obsažených ve vodě. Kalná voda ještě nemusí znamenat nebezpečné abrazivní částice, ale například přítomnost mikroorganismů. Naopak zdánlivě křišťálově čistá voda může plavit zrníčka křemenného písku.
- Pokud z kontrolního otvoru prosakuje voda, je zapotřebí těsnící element seřídit nebo vyměnit, nikoliv se zbavit problému pouhým ucpáním otvoru a doufat, že gufera vodu do oleje nepustí, jak bývá v praxi často zvykem (to už je lepší nechat vodu z otvoru volně odtékat).
- Hřídel je většinou v náboji zakončený maticí, kterou se reguluje přítlak a těsnost ucpávky. Přitahujte pouze opatrně. Nepomůže-li již další přitažení, nezbývá, než třecí ucpávku vyměnit a často i její protikus.
- Není-li plášť turbíny v místě kulovitého rozšíření pro oběžné kolo dělený na dvě poloviny (levnější stroje), bývá obtížné ze stroje oběžné kolo bez úhony vytáhnout. Podaří se to pouze při určitém natočení lopatek oběžného kola (jako ježek v kleci).
- U menších strojů je pohyb křížové hlavy řešen dlouhým táhlem procházejícím hlavním hřídelem (pro nedostatek místa v náboji) a teprve na jeho konci je ovládací servomotor. U vetších je hydraulický servomotor umístěný přímo v náboji oběžného kola.
- Lopatky jsou v místě průchodu z náboje těsněny těsnícími kroužky, vnitřní prostor náboje má olejovou náplň. K její kontrole a případné výměně slouží zátka zapuštěná do povrchu náboje. Ve vnějším plášti stroje bývá často kontrolní otvor zaslepený víčkem, který umožňuje odšroubování zátky a výměnu olejové náplně bez demontáže turbíny.
Výroba a vývoj turbín tohoto typu v ČR je spjat s firmami ČKD Turbo Technics s.r.o. a Hydrohrom. Vývoj strojů stále pokračuje. Zaměřuje se jak na zdokonalení regulace, tak i na použití novch materiálů, zjednodužšení konstrukčních uzlů a na unifukaci.
Pokud nelze regulaci oběžného kola provádět přímo za chodu stroje, pak turbína není "čistokrevnou" Kaplanovou turbínou, ale spadá do kategorie turbín vrtulových s lopatkami přestavitelnými za klidu. S nimi má shodné i provozní vlastnosti a použití.
MVE Pardubice
Pardubická malá vodní elektrárna byla do provozu uvedena v roce 1978. Nachází se u levého břehu se strojovnou krytou v úrovni okolního terénu. U vtoku do MVE jsou instalovány česle s automatickým odhrabováním. V MVE je instalována jedna přímoproudá Kaplanova turbína kolenového typu s pevným rozvaděčem. Při spádu 3,9 m a hltnosti 62 m³/s dosahuje výkonu 1,93 MW. Výkon turbíny je řízen podle průtoku řekou automatickou regulací horní hladiny. MVE je vedena jako bezobslužná.
Pardubická vodní elektrárna byla první elektrárnou s velkým horizontálním turbosoustrojím a jako takovou ji provázela řada technických obtíží. Provozní spolehlivost se podařilo zlepšit rekonstrukcí provedenou v letech 1998–2001 – upraveny byly elektročásti, rychlouzávěr, mazání ložisek turbosoustrojí a chlazení technologie. Dle vyjádření provozovatele elektrárna přesto dosahuje pouze 65% plného výkonu (maximální hltnost je na hranici 51 m³/s a její výkon se pohybuje maximálně okolo 1250 kW). Na přelomu let 2011-12 došlo ke komplexní rekonstrukci a modernizaci malé vodní elektrárny Pardubice. Pomocí devadesátitunového mobilního jeřábu došlo mj. k usazení nového generátoru o hmotnosti 12 tun a rozvaděče turbíny, který má hmotnost 26,5 tun. Účelem rekonstrukce je zvýšení výkonu MVE o až 10%.