Elektromotor
Z Wikipedie, otevřené encyklopedie
Elektromotor je elektrický, obvykle točivý stroj, měnící elektrickou energii na mechanickou práci. Opačnou přeměnu, tedy změnu mechanické práce na elektrickou energii, provádí generátor, např. dynamo či alternátor. Často bývají tato zařízení velmi podobná či zcela identická (až na některé drobné konstrukční detaily).
Obsah[skrýt]
|
Princip elektromotorů
Většina elektromotorů pracuje na elektromagnetickém principu, ale existují i motory založené na jiných elektromechanických jevech jako jsou elektrostatické síly, piezoelektrický jev či tepelné účinky průchodu elektrického proudu.
Základním principem, na němž jsou elektromagnetické motory založeny, je vzájemné silové působení elektromagnetických polí vytvářených vinutími, kterými protéká proud. Tuto sílu popisuje Lorentzův zákon síly.
Konstrukce
V elektrickém točivém stroji se rotující část stroje nachází obvykle uvnitř a podle své základní funkce se nazývá rotor. Statická, pevná, část stroje se nazývá stator. Rotační motor je konstruován tak, aby na sebe pole rotoru a pole statoru působila a vyvíjela kroutící moment přenášený na rotor stroje: rotor se tak točí a vykonává mechanickou práci.
Stejnosměrný elektromotor může obsahovat pevně spojenou sadu elektromagnetů, umístěných obvykle na statoru, a vinutý rotor.
U střídavých asynchronních elektromotorů (nejběžnější typ elektromotoru vůbec) mívá rotor jiné konstrukční uspořádání: obvykle se jedná o zvláštní elektrický obvod ve formě vodivé klece s vinutím buď vyvedeným na kroužky (kroužkový AM), nebo spojeným nakrátko.
Většina běžných elektrických motorů je konstruována na rotačním principu, ale existují i netočivé varianty elektromotorů, například lineární elektromotor, kdy stator stroje je rozvinut a tvoří pás umístěný podél pojezdové dráhy stroje. Tento druh motorů se v technické praxi používá zejména pro některá speciální dopravní zařízení.
Kotva
Rotor komutátorového stroje se nazývá kotva, podle tvaru jeho nejjednodušší konstrukce o minimálním nutném počtu třech vinutí, připojených na všechny tři lamely komutátoru, kdy vyniklé póly tvarem skutečně připomínají lodní kotvu.
Jako kotva tedy bývá označována část motoru, která je napájená pracovním proudem, nebo ta část dynama, která generuje výstupní napětí, a to i v případech, kdy už rotor tvarem lodní kotvu nepřipomíná. Výraz kotva se pro přeneseně používá i pro rotory jiných strojů, i nekomutátorových, např. pro asynchronní motor s kotvou nakrátko, nebo dokonce i pro stroje, kterým se rotor neotáčí uvnitř statoru, ale naopak okolo něj (větráky).
Komutátorové stroje
Jeden z prvních rotačních elektromotorů, možná i vůbec první, vynalezl Michael Faraday v roce 1821. Motor se skládal z volně zavěšeného drátu ponořeného do nádrže rtuti. Ve středu nádrže byl umístěn permanentní magnet. Elektrický proud procházel drátem, drát rotující kolem magnetu pak prokazoval, že proud vytvořil otáčivé magnetické pole kolem drátu.
Moderní motor na stejnosměrný proud byl náhodně objeven v roce 1873, když Zénobe Gramme vodivě spojil roztočené dynamo s druhým stojícím dynamem, z něhož se tím stal napájený motor.
Komutátorový stroj s permanentními magnety s dvoupólovou kotvou
Nejjednodušší komutátorový stroj
Nejjednodušší motor na stejnosměrný proud má stator tvořený permanentním magnetem a rotující kotvu ve formě elektromagnetu s dvěma póly. Rotační přepínač zvaný komutátor mění směr elektrického proudu a polaritu magnetického pole procházejícího kotvou dvakrát během každé otáčky. Tím zajistí, že síla působící na póly rotoru má stále stejný směr. V okamžiku přepnutí polarity (mrtvý úhel motoru) udržuje běh tohoto motoru ve správném směru setrvačnost. (Principiálně se tento motor trochu podobá střídavému synchronnímu motoru, kde rotační přepínání směru proudu a jím vytvářeného magnetického pole zajišťuje sama elektrorozvodná síť.)
Komutátor zajistí, že se v cívce změní směr proudu + a − (− a +) po každém pootočení o 180° (u dvoupólového motoru). Takto dochází ke změně směru indukčních siločar v cívce.
Rotor (kotva) je přes oranžový komutátor připojen ke zdroji stejnosměrného napětí. Stator je tvořen dvěma velkými permanentními magnety. |
Běžný komutátorový stroj buzený magnety
Motory s permanentním magnetem se dodnes využívají například v modelářství. Jen kotva je obvykle minimálně třípólová, aby nevznikal problém s mrtvým úhlem motoru.
Výhodou motoru s permanentním magnetem obecně je možnost snadno měnit směr otáčení polaritou vstupního napětí, výhodou při porovnání s ostatními komutátorovými stroji je úspora statorového vinutí.
Komutátorový stroj cize buzený
Místo permanentního magnetu se pro statory používá elektromagnetu. Cize buzený motor má kotvu (rotor) napájenu z jiného zdroje než buzení (stator). Každé vinutí se řídí zvlášť. U těchto motorů je podmínkou plynulá regulace napětí. Změna směru otáčení motoru je možno reverzací (přepólováním) kotvy, nebo buzení. Změna směru a zavedení elektrodynamické brzdy vyžaduje mnohem jednodušší zapojení obvodů. Tento motor nepotřebuje šuntování budicího vynutí (buzení má vlastní regulaci). Využíval se po rozvoji výkonové elektroniky (pulsní měniče). Využívá se u českých lokomotiv řady 163, 263, 363.
Sériový
Místo permanentního magnetu se pro statory běžných větších motorů využívá elektromagnetu. Pokud je vinutí statoru (budicí vinutí) spojeno s vinutím rotoru do série, mluvíme o sériovém elektromotoru. Tento typ elektromotoru má točivý moment nepřímo úměrný otáčkám. To znamená, že stojící elektromotor má obrovský točivý moment. Využívá se proto především u dopravních strojů a v elektrické trakci (vlaky, metro, tramvaje). Ve spojení s generátorem je schopen ideálně nahradit mechanickou převodovku. Dostupnější sériový elektromotor (na rozdíl od střídavých) proto často nalezneme také v levnějších přestavbách elektromobilů.
Odbuzený nezatížený sériový komutátorový stroj
S odbuzením nezatíženého stroje hyperbolicky rostou vlastní otáčky stroje, což je nebezpečné: U příliš vysokých rychlostí hrozí vylétávání lamel z komutátoru nebo úplné roztržení stroje, s podstatným ohrožením majetku a zdraví i životů lidí.
Derivační
Derivační elektromotor má elektromagnet statoru napájený paralelně s rotorem. Otáčky tohoto motoru jsou méně závislé na zátěži motoru. Navíc lze proud statoru samostatně regulovat. Proto se tento typ motoru využívá především u strojů, kde jsou požadovány relativně neměnné otáčky.
Kompaudní
Protikompaudní
Obecné vlastnosti komutátorových strojů
Rychlost motoru na stejnosměrný proud obecně závisí na velikosti napětí a proudu procházejících vinutím motoru a na zátěži neboli velikosti brzdného momentu. Rychlost motoru při daném brzdném momentu je úměrná napětí, točivý moment je úměrný proudu. Rychlost motoru lze regulovat změnou pracovního napětí a buzením.
Výhodou stejnosměrných motorů je relativní jednoduchost a univerzálnost využití. Sériový a derivační motory mohou fungovat nejen na stejnosměrný, ale i střídavý proud nízkých frekvencí. Jsou to tedy motory univerzální. Další výhodou proti motorům střídavým je možnost dosáhnout libovolných mechanicky dosažitelných otáček (motory na střídavý proud mají obvykle otáčky omezeny frekvencí sítě – 50 Hz = 3000 ot./min). Proto tyto motory nacházejí uplatnění v takových strojích, jako jsou vrtačky, mixéry, ale třeba i automobily a dopravní zařízení s elektrickou trakcí (např. lokomotivy, trolejbusy, tramvaje či vozy metra).
Největší nevýhodou stejnosměrných motorů je existence komutátoru. Je to mechanický přepínač, který spíná velké proudy a je – kromě náchylnosti k poruchám – náročný na údržbu a seřízení, jedná se o mechanicky poměrně značně namáhané zařízení vyžadující pravidelnou údržbu či výměnu některých jeho součástí. Jiskření na kartáčcích (tvořených obvykle bloky čistého uhlíku) je zdrojem významného elektromagnetického rušení. S rozvojem levnější a spolehlivější silnoproudé elektroniky (tedy zejména výkonovými tyristory a tranzistory) jsou proto stejnosměrné motory postupně vytlačovány motory s rotujícím magnetickým polem buzeným elektronicky.
Reverzace chodu stejnosměrných motorů
U sériových a derivačních motorů nelze změnit směr otáčení pouhým přepólováním napájecího napětí celého motoru – protože by došlo k přepólování statoru i rotoru, směr otáčení by zůstal zachován. Pro změnu směru je třeba přepólovat jen stator nebo jenom rotor.
Brzdění
Lze brzdit protiproudem, reverzací.
Protože stejnosměrné motory mohou fungovat i jako dynama, lze je využít jako součást elektrodynamické brzdy: Zmenšením vlastních otáček, například nabuzením, stroj přejde z motorického režimu do generátorového.
Bezkomutátorové motory
Motory založené na točivém poli
Synchronní stroj
- Podrobnější informace naleznete v článku Synchronní stroj.
Rotor stroje je tvořen magnetem nebo elektromagnetem, stator, na nějž je přiveden střídavý proud, vytváří pulzní nebo častěji rotující magnetické pole. Rotor se snaží uchovat si svoji konstantní polohu vůči otáčivému magnetickému poli vytvářenému průchodem střídavého proudu ve statoru, drží se v synchronismu až do kritického kroutícího momentu. Vůči poli statoru si udržuje skluz o úhel podle zátěže: Změnou zátěže se úhel změní přechodovým jevem, kývání rotoru, kdy se i cyklicky po určitou dobu (řádově sekundy) pravidelně mění otáčky rotoru. Výkonová zátěžová charakteristika se nazývá V-křivka.
Synchronní alternátory jsou téměř výhradní generátory střídavého proudu do sítě.
Synchronní motory mají řadu nevýhod - je třeba je roztočit na pracovní otáčky jiným strojem nebo pomocným asynchronním rozběhovým vinutím (především rozběh jako hvězda, samotný chod pak zapojen do trojúhelníku), pokud pod zátěží ztratí synchronizaci s rotujícím polem, skokově klesne jejich výkon a zastaví se. Proto jsou využívány jen ve speciálních případech (např. pohon gramofonu, kdy jsou nevýhody vyváženy požadavkem na pravidelnost otáček o celočíselném násobku frekvence elektrické sítě (za předpokladu, že frekvence napájecí sítě je skutečně konstantní). V současné době se ovšem uplatňují i v pohonu dopravních prostředků.[1] Ze synchronního motoru se vyvinul krokový motor a střídavý servomotor.
Asynchronní motor
- Podrobnější informace naleznete v článku Asynchronní motor.
Asynchronní motor má proti synchronnímu jinou konstrukci rotoru. Rotor se obvykle skládá ze sady vodivých tyčí, uspořádaných do tvaru válcové klece. Tyče jsou na koncích vodivě spojeny a rotor se pak nazývá „kotva nakrátko“. U stojícího motoru rotující magnetické pole statoru indukuje v tyčích rotoru elektrické proudy, které vytváří své vlastní elektromagnetické pole. Obě magnetická pole (rotoru a statoru) pak spolu navzájem reagují a vzniká tak elektromotorická síla. Otáčky rotoru vzrůstají. Tím, jak se přibližují otáčky rotoru otáčkám magnetického pole, klesají indukované proudy a intenzita jimi vytvářeného pole, klesají tím i otáčky rotoru a tím i točivý moment motoru. Pokud je motor alespoň minimálně zatížen, nikdy nedosáhne otáček daných frekvencí napájecího proudu (není s ní nikdy synchronní – proto se nazývá asynchronní motor).
Tento druh motoru je v praxi nejběžnější, využívá v mnoha oblastech průmyslu, dopravy i v domácnostech. Jeho výkon se pohybuje od několika wattů až do mnoha set kilowattů. S rozvojem levných a výkonných elektronických řídicích systémů nahrazuje postupně tento druh motoru sériový elektromotor, užívaný zejména v pohonech určených pro elektrickou trakci (kolejová vozidla a trolejbusy).
Další druhy motorů
Krokový motor
- Podrobnější informace naleznete v článku Krokový motor.
Krokový motor je speciální druh mnohapólového synchronního motoru. Využívá se především tam, kde je třeba přesně řídit nejen otáčky, ale i konkrétní polohu rotoru. Nachází uplatnění v přesné mechanice, regulační technice, robotice a podobných oborech. Krokový motor je unipolární nebo bipolární.
Lineární elektromotor
- Podrobnější informace naleznete v článku Lineární elektromotor.
Lineární elektromotor je mnohapólový motor, jehož stator je rozvinut do přímky. Využívá se například v dopravě pro pohon vlaků na magnetickém polštáři. (Zkušební okruh rychlovlaku Maglev je vybudován nedaleko Hamburku.) V poslední době se lineární motor hojně využívá i pro rozhoupávání zvonů. Na lineárním principu také pracují speciální elektrické stroje určené pro přeměnu elektrické energie na mechanickou energii ve formě zvuku, označované jakožto reproduktor. Další využití je v přesných CNC obráběcích strojích (typicky brusy), kde jemný magnetický pohyb vítězí nad mechanickými převody, jež trpí vůlemi.
Střídavý servomotor
Střídavé servomotory jsou bezkartáčové synchronní motory s permanentními magnety na rotoru a třífázovým vinutím ve statoru. Optimalizovaná konstrukce motoru s použitím nových magnetických materiálů dovoluje až pětinásobné momentové přetížení, a tyto motory jsou proto vhodné pro dynamicky náročné úlohy s nízkou spotřebou jako provoz silničních elektromobilů.[zdroj?] Doplněním vhodnou planetovou převodovkou je možno optimalizovat potřebný moment k otáčkám pohonu.